4,287 research outputs found

    Magnetic fields in primordial accretion disks

    Full text link
    Magnetic fields are considered as a vital ingredient of contemporary star formation, and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations, and are subsequently amplified by the small-scale dynamo, leading to a strong tangled magnetic field. Here we explore how the magnetic field provided by the small-scale dynamo is further amplified via the αΩ\alpha-\Omega dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop.~III star with 1010~M_\odot and an accretion rate of 10310^{-3}~M_\odot~yr1^{-1}, and a supermassive star with 10510^5~M_\odot and an accretion rate of 10110^{-1}~M_\odot~yr1^{-1}. For the 1010~M_\odot Pop.~III star, we find that coherent magnetic fields can be produced on scales of at least 100100~AU, which are sufficient to drive a jet with a luminosity of 100100~L_\odot and a mass outflow rate of 103.710^{-3.7}~M_\odot~yr1^{-1}. For the supermassive star, the dynamical timescales in its environment are even shorter, implying smaller orbital timescales and an efficient magnetization out to at least 10001000~AU. The jet luminosity corresponds to 106.0\sim10^{6.0}~L_\odot, and a mass outflow rate of 102.110^{-2.1}~M_\odot~yr1^{-1}. We expect that the feedback from the supermassive star can have a relevant impact on its host galaxy.Comment: Accepted for publication in Astronomy & Astrophysics, comments are still welcom

    The formation of supermassive black holes in rapidly rotating disks

    Full text link
    Massive primordial halos exposed to moderate UV backgrounds are the potential birthplaces of supermassive black holes. In such a halo, an initially isothermal collapse will occur, leading to high accretion rates of 0.1\sim0.1~M_\odot~yr1^{-1}. During the collapse, the gas in the interior will turn into a molecular state, and form an accretion disk due to the conservation of angular momentum. We consider here the structure of such an accretion disk and the role of viscous heating in the presence of high accretion rates for a central star of 1010, 100100 and 10410^4~M_\odot. Our results show that the temperature in the disk increases considerably due to viscous heating, leading to a transition from the molecular to the atomic cooling phase. We found that the atomic cooling regime may extend out to several 100100~AU for a 10410^4~M_\odot central star and provides substantial support to stabilize the disk. It therefore favors the formation of a massive central object. The comparison of clump migration and contraction time scales shows that stellar feedback from these clumps may occur during the later stages of the evolution. Overall, viscous heating provides an important pathway to obtain an atomic gas phase within the center of the halo, and helps in the formation of very massive objects. The latter may collapse to form a massive black hole of about 104\geq 10^4~M_\odot.Comment: Accepted for publication in Astronomy & Astrophysics, comments are still welcom

    Witnessing the birth of a supermassive protostar

    Full text link
    The detection of z>6\rm z>6 quasars reveals the existence of supermassive black holes of a few 109 M\rm 10^9~M_{\odot}. One of the potential pathways to explain their formation in the infant universe is the so-called direct collapse model which provides massive seeds of 105106 M\rm 10^5-10^6~M_{\odot}. An isothermal direct collapse mandates that halos should be of a primordial composition and the formation of molecular hydrogen remains suppressed in the presence of a strong Lyman Werner flux. In this study, we perform high resolution cosmological simulations for two massive primordial halos employing a detailed chemical model which includes H\rm H^- cooling as well as realistic opacities for both the bound-free H\rm H^- emission and the Rayleigh scattering of hydrogen atoms. We are able to resolve the collapse up to unprecedentedly high densities of 103 g/cm3\rm \sim 10^{-3}~g/cm^3 and to scales of about 104\rm 10^{-4} AU. Our results show that the gas cools down to \rm \sim 5000 K in the presence of H\rm H^- cooling, and induces fragmentation at scales of about 8000 AU in one of the two simulated halos, which may lead to the formation of a binary. In addition, fragmentation also occurs on the AU scale in one of the halos but the clumps are expected to merge on short time scales. Our results confirm that H\rm H^- cooling does not prevent the formation of a supermassive star and the trapping of cooling radiation stabilises the collapse on small scales.Comment: Accpeted version, to appear in MNRAS, comments are still welcome and high resolution version is available at http://www2.iap.fr/users/latif/DCBH.pd

    Initial mass function of intermediate mass black hole seeds

    Get PDF
    We study the Initial Mass Function (IMF) and host halo properties of Intermediate Mass Black Holes (IMBH, 10^{4-6} Msun) formed inside metal-free, UV illuminated atomic cooling haloes (virial temperature T_vir > 10^4 K) either via the direct collapse of the gas or via an intermediate Super Massive Star (SMS) stage. We achieve this goal in three steps: (a) we derive the gas accretion rate for a proto-SMS to undergo General Relativity instability and produce a direct collapse black hole (DCBH) or to enter the ZAMS and later collapse into a IMBH; (b) we use merger-tree simulations to select atomic cooling halos in which either a DCBH or SMS can form and grow, accounting for metal enrichment and major mergers that halt the growth of the proto-SMS by gas fragmentation. We derive the properties of the host halos and the mass distribution of black holes at this stage, and dub it the "Birth Mass Function"; (c) we follow the further growth of the DCBH due to accretion of leftover gas in the parent halo and compute the final IMBH mass.We consider two extreme cases in which minihalos (T_vir < 10^4 K) can (fertile) or cannot (sterile) form stars and pollute their gas leading to a different IMBH IMF. In the (fiducial) fertile case the IMF is bimodal extending over a broad range of masses, M= (0.5-20)x10^5 Msun, and the DCBH accretion phase lasts from 10 to 100 Myr. If minihalos are sterile, the IMF spans the narrower mass range M= (1-2.8)x10^6 Msun, and the DCBH accretion phase is more extended (70-120 Myr). We conclude that a good seeding prescription is to populate halos (a) of mass 7.5 < log (M_h/Msun) < 8, (b) in the redshift range 8 < z < 17, (c) with IMBH in the mass range 4.75 < log (M_BH/Msun) < 6.25.Comment: MNRAS, in press. Comments welcom
    corecore